Introduction to OpenFOAM & paraView Course Syllabus

Instructor:

Dr. Siva Parameswaran Professor, Department of Mechanical Engineering Email: <u>siva.parameswaran@ttu.edu</u>

Course Information:

- Reference Books:
 - a) <u>Modern Compressible Flow</u>: With Historical Perspective, John D. Anderson.
 - *b)* <u>An Introduction to Computational Fluid Dynamics</u>: The Finite Volume Method, H Versteeg & W Malalasekera.
 - c) <u>Numerical Heat Transfer and Fluid Flow</u>: Computational Methods in Mechanics & Thermal Sciences, Suhas V. Patankar.
 - d) <u>Computational Methods for Fluid Dynamics</u>, Joel H. Ferziger, Milovan Peric.
 - e) <u>A Friendly Introduction to Numerical Analysis</u>, Brian Bradie.
 - f) Advanced Engineering Mathematics, Erwin Kreyszig.
- Softwares:
 - a) <u>VirtualBox</u> (<u>Ubuntu OS</u>)
 - b) OpenFOAM & paraview (7 & above)
 - Note: (All these are Free & opensource s/w)
- **Description:** Introduction and Installation; CFD overview with Linux basics, Meshing in OpenFOAM, Types of Errors and Debugging; Next Steps to Master OpenFOAM.
- **Purpose:** This course presents an overview of Computational Fluid Dynamics and gives a working idea about **OpenFOAM** and **paraview**. Learning the workflow to setup a CFD simulation in OpenFOAM helps understand the working process of popular commercial CFD codes like Fluent, Solid works Flow simulation, Acusolve, Converge...etc.
- Prerequisites: Basic Fluid Mechanics Concepts & Vector Calculus.
- Laptop: Minimum 4GB RAM PC with decent internet connection.
- End of Course Feedback Form to be filled after completing the Course.

Grading Methods:

• <u>Quiz:</u>

Students will be given a set of questions after every lesson to test their knowledge on the given section of the course. If the student procures 80% and above in that section, he/she will be allowed to move on to the next section. On the other hand, if he/she fails to score above 80% must retake the test to proceed to the next lesson.

• <u>Projects:</u>

This course has two projects (**optional**). They involve submission of a detailed report on the investigation asked to do. Though this is optional, students who complete the same, will have an opportunity to be featured on the website.

<u>Note:</u> Queries on any content posted on the website need to be addressed to <u>support@katrinsakthi.com</u>

Expected Learning Outcome	Assessment Methods
Basic Linux Commands	Quiz
CFD workflow & OpenFOAM code structure	Quiz
Meshing in OpenFOAM	Quiz
Common Errors in OpenFOAM simulation	Quiz
Post-process using paraview	Quiz
• Setting up a CFD simulation and running a tutorial case in OpenFOAM	Projects

Expected Learning Outcomes / Assessment Methods:

Schedule (subjected to change):

Lesson	Video #	Duration	Topics
1	1	0:06:00	Introduction to OpenFOAM & paraview
	2	0:13:43	Installation Help
	3	0:16:15	Basic Linux Commands
2	4	0:06:31	Important CFD terms to Know
	5	0:08:51	CFD Workflow and structure of OpenFOAM
	6	0:09:52	BlockMesh in OpenFOAM Part 1
3	7	0:09:29	BlockMesh in OpenFOAM Part 2
	8	0:10:29	OpenFOAM Simulation Walkthrough
	9	0:16:26	Governing equations & Solvers in OF
	10	0:04:22	Common Simulation Errors
4	11	0:09:41	Post-processing using paraview
	12	-	Final Project 1
	13	-	Final Project 2(optional)
5	14	-	Feedback Form & Next Steps with summary
	15	-	Promo to next course

ACADEMIC INTEGRITY:

Plagiarism of any sort will be seriously viewed upon.